Will the Internet of Things Save us from Traffic Jams?
Experts have given the green light to a traffic light revolution – but we’re still some distance from a queuing-free future
Traffic is getting worse. It doesn’t just feel that way, the stats prove it: commuters in 2014 spent an average 66 more hours stuck in traffic than they did in 2013, according to navigation tech firm TomTom. So when Internet of things technology is disrupting every part of our lives, when will traffic lights be rethought and rebuilt?
Well, the traffic light revolution is already underway. It is all part of the promise of connected and self-driving cars, which allow data about individual journeys, routes and vehicles to be centrally monitored, controlled and systematized.
Once computers are in full control of our cars, do we even need traffic lights at intersections? That’s the idea behind AIM – autonomous intersection management – at the artificial intelligence laboratory at the University of Texas at Austin. Rather than stop at red lights, self-driving cars would schedule a slot through an intersection in real-time, speeding up or slowing down to ensure they’re in the right place at the right time – and not smashing into another car.
For the idea to work, it would require roads to be mostly full of autonomous cars, says project leader Professor Peter Stone – and then it wouldn’t seem so terrifying.
How much faster will careening through intersections be compared to carefully stopping? The researchers compared AIM to heavy traffic on a major road, saying it would reduce delay by as much as 100 times – though that’s only at intersections, not total driving time.
It not only promises to remove time waiting at lights, but will cut fuel usage and emissions as well. “A lot of emissions and fuel usage are caused by acceleration, and our system will allow the cars to make a much more constant speed,” he says, adding that the savings could be “quite significant”.
But even with a complicated system such as AIM, intersections will still be safer than they are today, Prof Stone says, pointing out that a third of all fatal accidents happen at intersections.
“Intersections are already quite dangerous. When a computer’s doing the driving, even with all the cars going through without stopping, it’s going to be a lot safer than it is today.”
Computers aren’t driving our cars yet and won’t be for some time, but there are some connected car projects that already claim to be easing the flow of traffic.
TomTom collects swaths of traffic data from its satnav devices but also used anonymised data from third party navigation apps, including smartphone maps. “We have agreements with a number of smartphone manufacturers, so they provide us with real time GPS feeds wherever their smartphones are,” says Nick Cohn, senior traffic expert at TomTom.
It also gathers data from telematics units installed in fleet vehicles as well as in-dash systems, giving TomTom a comprehensive overview of traffic flows. The resulting information on near real-time congestion is shared with customers, which includes road authorities and they can use it to plan traffic management as well as consumers.
As cars become more connected – whether it’s through satnav or simply the smartphones in our pockets – better data in means we get better data out on the road.
Though traffic data makes it possible to see the movement of traffic in real time, and traffic lights themselves are operated algorithmically, it is still not possible to engineer a way of turning the lights green as you pull up.
This is already happening in in a limited sense, noted Stevens. “At a local signal level, we can implement priority measures for ambulances, buses, etc - that’s a standard feature in some software and has been for years,” says Stevens. “However, giving priority to one vehicle makes things slightly worse for all others. So, there’s little point in giving one or two connected private passenger vehicles special priority.”
There are reasons to give some cars priority, and that’s being trialed by Newcastle. There, traffic lights are “talking” to motorists, sending messages to a device in car about obstacles or delays ahead, as well as helping them adjust their speeds to hit lights when they’re green.
As with any tech innovation, one of the biggest challenges is security. The best example so far is surely hacked construction signs in the US with attackers warning of zombies ahead, but it’s easy to imagine how taking out traffic networks could shut down a city or otherwise wreak havoc.
The best way to achieve it may not be via smart, reactive traffic lights, but by sending messages to drivers in cars, giving them useful information to react to and nudging them into better routes.
“It’s probably easier to change driver behaviour than it is to change the traffic lights.” Until computers take over driving, at least.
Guardian: http://bit.ly/1aKT7eX