Security & Privacy Are Critical To Connected Cars

Automated vehicle system technology hierarchy

The automotive industry is rapidly evolving to transform the car from a simple mode of transport to a personalized information hub:

There will be an estimated 220 million connected cars on the road globally by 2020. Each of those cars will be equipped with more than 200 sensors, more than double the number of sensors in connected cars on the road today.

New features and capabilities get added every year, improving comfort, convenience, safety and efficiency — but also growing is the amount of data cars generate, process, exchange and store. Connected cars provide benefits such as better traffic flow, improved fuel economy and better infotainment consoles. But at the same time, the number of attack vectors increases, which potentially leaves personal, financial and vehicle information vulnerable, making the connected car attractive to hackers.

Already we’ve seen security researchers demonstrate attacks, and have seen hacks on Chryslers, Jeep Cherokees and Volkswagens. These demonstrations and hacks are leaving consumers and lawmakers, as well as cybersecurity and privacy experts, concerned.

As the market for connected cars is expected to grow at a five-year compound annual growth rate of 45 percent, standardized frameworks are necessary to provide customers assurance that a car’s security attributes can be trusted and that the customer’s security needs are protected.

Discussions have commenced, such as in July when Senators Ed Markey and Richard Blumenthal detailed plans to introduce new legislation called the Security and Privacy in Your Car Act of 2015 (SPY Car Act). The SPY Car Act should ensure that cars sold in the US meet certain standards of protection against digital attacks and restrict what type of data is vehicle collected. These standards should be developed by the National Highway Traffic Safety Administration (NHTSA) and the Federal Trade Commission (FTC) and the legislation also recommends, auto manufacturers be fined up to $100,000 in civil penalties for each violation of unauthorized access to data in connected cars.

Additionally, technology organizations are joining the fight. Intel, for example, created the Automotive Security Review Board to conduct security audits and tests of its automotive hardware platform and offer design recommendations. Lastly, the Fast Identity Online (FIDO) Alliance has made efforts to improve interoperability among strong authentication devices, which was originally created to help Google resolve enterprise security issues. But over time, there was value realized for the automotive industry. Efforts by the FIDO have anonymised Internet users via their physical possessions and aims to protect their digital identities.

The connected car is a complex IT system on wheels

System performance and reliability has had (and will always have) high attention from vehicle manufacturers, with a strong focus on safety hazards. Cybersecurity threats, however, represent a largely unexplored field for the automotive industry.

But like safety, security is a quality aspect — threats of either type can have a negative impact on the reliability and safety of the connected car. By adding wireless interfaces to their cars and connecting their vehicles to external networks, manufacturers are all of a sudden confronted with new threats that stem from an uncontrolled and evolving environment.

The fact that one can remotely access in-vehicle systems also implies that these systems face security threats coming from the outside world. And thus, there is a risk that these systems can be hacked and that data contained therein can be stolen. This poses a threat to the reliability and safety of the car — the hacker can potentially take control of the car — as well as to the privacy of the driver — vehicle data can be used to build a profile of car owners.

Law enforcement has used bait cars to draw out would-be thieves, then remotely lock and disable the car before arresting them. What if bad guys could take over cars and remotely initiate the brakes on a car traveling at high speeds on the freeway? This not only impacts data, but the safety of drivers and passengers. Beyond just cars for personal use, cars being operated by companies like Uber and other car services are impacted.

Today, the ISO 26262 standard addresses systematic failures and random hardware failures. Such safety hazards are quite predictable — systematic failures are deterministic and random hardware failure rates can be predicted with reasonable accuracy — and the nature of the hazards will not change over time. Furthermore, the likelihood that multiple failures occur simultaneously is considered to be rather unlikely in safety engineering.

Cybersecurity threats, on the other hand, are generally less predictable, and they also will change over time. Furthermore, hackers do not hesitate to manipulate various parts of a system simultaneously if that increases the chance of a successful attack. As a consequence, security threats are not necessarily covered within a safety framework such as ISO 26262.

Security must become part of the entire life cycle of the vehicle

Cybersecurity frameworks are fairly new to the automotive industry and it will likely take some time, as was the case with functional safety, before they are widely embraced. To successfully protect connected cars from cyberattacks, a paradigm shift is needed in automotive vehicle design: Security must become part of the entire life cycle of the vehicle. It needs to become an integral part of the design process, as opposed to an afterthought, because security is only as strong as the weakest link.

It is good practice to apply a defense-in-depth strategy, using multiple security techniques to mitigate the risk of one component of the defense being compromised or circumvented. This calls for security-by-design and privacy-by-design, which may also have a significant impact on the architecture and the in-vehicle electronics. Furthermore, the security architecture requires regular maintenance.

In addition, standardization is needed. On the process side, one can think of standardized life-cycle management, from development to deployment to maintenance. Something based on or comparable to Common Criteria could form the basis for such a framework, but automotive-specific adaptations may be needed, as was also the case for ISO 26262 (which was derived from a generic safety standard, IEC 61508).

But technical specifications also are a must-have. It’s not uncommon for straightforward mistakes to be made in security architectures and implementations. A seamless integration of features like secure boot and secure communication into a well-reviewed specification like the AUTOSAR software stack is therefore highly beneficial.

The standardization bodies are currently taking initial steps to create such standards. For example, the SAE Vehicle Electrical System Security Committee is working on a cybersecurity guidebook (J3061) and requirements for hardware-protected security (J3101), and ISO’s TC22 plans to identify the need for communication channels between functional safety and cybersecurity in ISO 26262 Edition 2.

The connected car is a complex IT system on wheels, consisting of many electronic control units (ECU) that are linked together via the in-vehicle network. To secure all of this, an integral approach is needed, where countermeasures are applied at all levels. While standardization efforts have commenced, we’ve only scratched the surface — all the more reason there should be a sense of urgency to get security and privacy standardized and adopted.

TechCrunch: http://tcrn.ch/1PDxL0g

« Social Media Helped Create The Arab Spring, But Could Not Save It
Protecting US Innovation From Cyberattack »

CyberSecurity Jobsite
Perimeter 81

Directory of Suppliers

Clayden Law

Clayden Law

Clayden Law advise global businesses that buy and sell technology products and services. We are experts in information technology, data privacy and cybersecurity law.

Cyber Security Supplier Directory

Cyber Security Supplier Directory

Our Supplier Directory lists 6,000+ specialist cyber security service providers in 128 countries worldwide. IS YOUR ORGANISATION LISTED?

CSI Consulting Services

CSI Consulting Services

Get Advice From The Experts: * Training * Penetration Testing * Data Governance * GDPR Compliance. Connecting you to the best in the business.

ON-DEMAND WEBINAR: What Is A Next-Generation Firewall (and why does it matter)?

ON-DEMAND WEBINAR: What Is A Next-Generation Firewall (and why does it matter)?

Watch this webinar to hear security experts from Amazon Web Services (AWS) and SANS break down the myths and realities of what an NGFW is, how to use one, and what it can do for your security posture.

BackupVault

BackupVault

BackupVault is a leading provider of automatic cloud backup and critical data protection against ransomware, insider attacks and hackers for businesses and organisations worldwide.

Acalvio Technologies

Acalvio Technologies

Acalvio provides Advanced Threat Defense (ATD) solutions to detect, engage and respond to malicious activity inside the perimeter.

Digittrade

Digittrade

Digittrade develop and produce external encrypted hard disks and secure communications apps.

adaware

adaware

adaware is an award-winning security and privacy software provider, empowering users to connect with confidence.

HKCERT

HKCERT

HKCERT is the centre for coordination of computer security incident response for local enterprises and Internet Users in Hong Kong.

IPQualityScore (IPQS)

IPQualityScore (IPQS)

IPQS anti-fraud tools provide a real-time fraud score to analyze how likely a user or visitor is to engage in fraudulent behavior.

Cytellix

Cytellix

Cytellix is an industry-standards-based, managed cybersecurity service provider, specializing in proactive behavioral analytics and situational awareness of an organization’s cyber posture.

Secured Communications

Secured Communications

Secured Communications has developed the only unified secure communications platform trusted by public safety and counter terrorism professionals around the world.

Pixm

Pixm

Pixm’s computer vision based approach offers a truly unique and effective means to protect organizations from web-based phishing attacks.

Synamic Technologies

Synamic Technologies

Synamic Technologies was founded in 2018 as a start-up to automate cyber security processes. Our CISOSCOPE product automates vulnerability management, risk management and compliance.

YorCyberSec

YorCyberSec

YorCyberSec act as a trusted Cyber and Information Security broker and procurement specialist. We help companies to Reduce Risk, Increase Assurance and Improve Performance.

Zeva

Zeva

Zeva solves complex identity and encryption challenges for the federal government and corporations around the globe.

CyberGate Technologies

CyberGate Technologies

CyberGate Technologies is a world-class, customer focus cyber security service and consultancy company operating the UK, Europe, Middle East, and Africa.

Resemble AI

Resemble AI

Resemble AI is an innovator in Generative Voice AI technology and tools to combat AI fraud including audio watermarking and deepfake detection.

Ionize

Ionize

Ionize offers solutions to help you uplift your capability across the full-spectrum of cyber security - assessment, remediation, monitoring, governance and ongoing education.

Softanics

Softanics

Softanics’ ArmDot protects .NET apps with advanced obfuscation, control flow protection, and virtualization, securing code against reverse engineering without requiring agents or environment changes.

Relyance AI

Relyance AI

Relyance AI - One unified platform for privacy, security, & governance.