New Age of Digital Farming
Recent technological advances have gone a long way toward making “precision farming” possible, which involves gathering real-time data and obtaining actionable insights that can specify what exactly needs to be done at each location at any given time.
Traditional agriculture is based on performing particular tasks, such as planting and harvesting, based on a predetermined schedule. Under this model, there’s minimal control over damage and waste.
“Precision Agriculture can transform the food industry to be more efficient, less costly, and more sustainable,” says Paul Chang, Global Supply Chain Expert at IBM. “By utilizing IoT platforms to gather various sensor data and integrate with predictive analytics, the industry can take actions to maximize yield, minimize losses, and ensure sustainable practices.”
“Digital advancements in technology are able to make agriculture more productive and can help stabilize crops,” says Kai Goerlich, Digital Futures Research Director at SAP. “Sensors and real-time analytics can be used to optimize the planting, growing, harvesting, and transporting of food commodities.”
One such platform is SAP’s Digital Farming, which connects farmers, agricultural manufacturers and suppliers alike. “Crucial data from across entire farms are now collected and analyzed by a single cloud platform, which makes farming more efficient and sustainable,” Goerlich says.
“Today’s large and local farms can leverage IoT to remotely monitor sensors that detect soil moisture, crop growth and livestock feed levels, remotely manage and control their irrigation equipment, and combine operational data with third party information,” says Will Yapp, Vice President of Business Development at Senet, a manufacturer of IoT sensors.
The combination, Yapp says, offers new ways to use empirical data to improve operational planning and decision making.
Senet’s sensors operate over Low Power, Wide Area Networks (LPWAN) to reduce the costs of deployment and connectivity over long ranges. “[LPWAN sensors] are ideal for gathering data about local agricultural and environmental conditions supporting IoT applications designed to increase the quality, quantity, sustainability and cost effectiveness of agricultural production,” Yapp says.
The data generated by these sensors can be used to improve precision farming, such as applying water to areas where the moisture of soil has dropped instead of wasting water in areas that don’t need it, Yapp explains. “An IoT-managed watering system can considerably decrease consumption while at the same time increasing yields,” he says.
IBM’s Chang also presents scenarios where emerging technologies can help unlock the power of precision farming, such as the combination of video-capturing drones and cloud-based analytics software that can show the current conditions of crops and assist farmers in taking actions that can impact the growth curve of the crops.
Leveraging Weather Forecast Data
Being able to integrate weather forecasts into the farming process is also a vital component of precision farming. “Precisely monitoring incoming weather condition can help ensure that water is only used when necessary,” Chang says.
“Ninety percent of all crop losses are due to weather,” adds Carrie Gillespie, Agriculture Lead for The Weather Company, an IBM business. This is especially important as climate change is starting to take its toll on crops and farming in different areas across the world. “By integrating weather forecast models into crop planting and harvesting, better decisions can be made in advance,” Gillespie says.
The Weather Company helps farmers be more efficient and profitable in the field by leveraging micro-weather data for predictive modeling in the cloud.
The correct use of weather and soil data can give insights into when and how much to irrigate, or how to increase crop yield while reducing the use of pesticide and fertilizer.
The use of analytics and machine learning technology can also enable disease and pest prediction and help growers prevent the loss of crops and tune their use of chemicals.
Integrating weather forecasts into the agriculture process also helps improve the logistics around harvesting and transportation. Weather and soil analytics can predict and specify when fields will be least affected by the weight of harvesting equipment and which fields workers should be deployed to. It can also help predict which distribution routes will be affected by rain and upcoming weather changes, especially in countries where roads are dirt and heavy rain can cause trucks to get stuck in mud.
The changes overcoming the green planet will impose a new order in the production, distribution and consumption of food in the coming decades. If the past is any indication, emerging technologies will help humanity overcome food shortage just as it did in past cycles. The question is whether it will do so in time to prevent a crisis from developing.
TechCrunch: Cyber Revolution: A Big Step Change Business Leaders Need To Understand (£):